Mise en œuvre de la Directive cadre sur l'eau Propositions IFREMER pour une typologie des eaux côtières et de transition

Contributeurs:

Pascal Lazure et Rudy Mauge (Hydrodynamique)
Axel Ehrhold, Brigitte Guillaumont, et Dominique Hamon
(Nature du substrat)

Chantal Croguennoc et Bernard Raffin (Cartographie)
Michel Joanny et Benoît Beliaeff (Coordination)

Direction Environnement et aménagement Littoral Service Applications Opérationnelles (DEL/AO)

Novembre 2002 - R.INT.DEL/AO 02-11

Convention MEDD/IFREMER n° CV 02000026

sommaire

SOMMAIRE

1.	Contexte de l'étude3	
2.	Démarche4	
3.	Méthodologie pour le volet hydrodynamique6	
3.1. 3.2. 3.3.	Description des variables caractérisant l'environnement hydrodynamique . 6 Etude préalable	
4.	Méthodologie pour le volet nature du substrat16	j
4.1. 4.2. 4.3.	Etat des connaissances :	
5.	Limites cartographiques19)
5.1. 5.2. 5.3. subs	Nature des limites nécessaires à la cartographie	
6.	Synthèse : définition des masses d'eau naturelles22	
6.1. 6.2.	Présentation et discussion des résultats	
7.	Bibliographie26	i
Anr	nexe 1 : description des paramètres hydrodynamiques choisis2	28
Anr	nexe 2 : Cartes des limites administratives32	1
	nexe 3 : Répartition des surfaces de masses d'eau naturelles	

1. Contexte de l'étude

La Directive 2000/60/CE du Parlement Européen et du Conseil du 23 octobre 2000 (DCE) établit un cadre pour une politique communautaire dans le domaine de l'eau. L'objectif de la Directive est l'atteinte d'un bon état écologique et chimique des masses d'eau en 2015, pour les eaux souterraines et les eaux de surface, incluant les eaux côtières et les eaux de transition (e.g. estuaires, étangs littoraux saumâtres,...). La classification écologique d'une masse d'eau s'établit par comparaison avec un état de référence écologique, qui est celui dans lequel devrait se trouver la masse d'eau en dehors de tout impact anthropique.

La Directive prévoit la définition d'un référentiel écologique (et chimique) par type de masse d'eau. Il est donc absolument fondamental d'élaborer une typologie de ces masses d'eau avec une séparation préalable des eaux littorales en eaux côtières et eaux de transition. L'échelle retenue doit permettre la mise en place de stations, représentatives de la masse d'eau considérée, pour le contrôle de surveillance prévu par la Directive. En outre, l'emprise spatiale de chaque masse d'eau doit être compatible avec une échelle de gestion opérationnelle à l'intérieur de chaque district hydrographique.

L'IFREMER a été chargé, dans le cadre de sa convention de subvention avec le ministère de l'écologie et du développement durable (MEDD), de proposer pour l'ensemble du littoral français une telle typologie des masses d'eau côtière et de transition. La délimitation des masses d'eau proprement dite, qui sera réalisée à l'échelle des districts, s'appuiera ainsi sur une approche commune. Les travaux présentés dans le présent document ont été supervisés par le groupe DCE "Eaux littorales" du MEDD.

2. Démarche

La difficulté de la tâche consiste à définir des critères de zonage basés sur l'environnement physique alors que ces zones seront par la suite examinées en fonction de critères biologiques pour lesquels on recherchera une relative homogénéité. Ceci nous conduit à rejeter d'emblée le système A proposé par la DCE. Le système A autorise une définition des types de masses d'eau uniquement basée sur deux paramètres – hormis les coordonnées géographiques – qu'il s'agisse des eaux de transition (marnage, salinité) ou des eaux côtières (bathymétrie et salinité). En outre, le système A fixe des seuils *a priori*, entraînant une forte rigidité d'utilisation, et rend ainsi quasiment impossible l'établissement de liens objectifs entre les facteurs physiques définissant la masse d'eau et les communautés biologiques y vivant.

Ceci nous conduit à privilégier le système B, plus souple de par le panel de facteurs facultatifs proposés, rendant probablement plus aisée la définition ultérieure de référentiels écologiques. On cherchera ainsi à définir des zones en fonction de deux critères dont l'importance sur la biologie (benthique et pélagique) est démontrée : la capacité de renouvellement des eaux et les caractéristiques géomorphologiques

La capacité du milieu à se renouveler soit par mélange, soit par le transport est une notion essentielle qui permet de caractériser la sensibilité de la zone aux apports terrestres ou non, localisés ou diffus. Ceux ci peuvent avoir différentes origines :

- Des apports locaux diffus ou véhiculés par les rivières ; la capacité de disperser ces apports influe sur les propriétés des eaux et de manière générale sur la biologie locale.
- □ Des œufs, larves de poissons ou autres vecteurs biologiques peuvent être émis localement ou dans un secteur contigu et être transportés par les courants. C'est le cas de nourriceries qui sont alimentées en larves en provenance du large. La capacité de ces éléments à se maintenir dans un secteur donné influe sensiblement sur la dynamique de nombreuses populations.
- Des apports par les grands panaches fluviaux dont l'estuaire est distant de plusieurs dizaines voire centaines de kilomètres. Ces apports à la zone côtière ne peuvent plus être mis en évidence par l'examen des apports locaux mais uniquement par la caractérisation des grands panaches fluviaux. Dans cette optique, le critère de la salinité se révèle donc être un paramètre intéressant.

En outre, il est nécessaire d'examiner les caractéristiques du renouvellement à une échelle plus importante que le strict espace géographique concerné par la DCE car le milieu est en continuel mouvement et les caractéristiques observées à la côte ne dépendent pas que des conditions locales. On peut par exemple noter que la flore phytoplanctonique observable dans les eaux très côtières de la façade atlantique (donc mélangées localement) ont les caractéristiques d'un peuplement de zones stratifiées (Gailhard, com. pers.) démontrant ainsi que cette flore est issue d'un transport du large vers la côte.

Les critères géomorphologiques évoluent très peu au cours du temps à la différence des paramètres précédents. Ils conditionnent pour une bonne part les peuplements benthiques. Ils résultent pour une part variable de l'hydrodynamique notamment des courants à haute fréquence. L'exposition à la houle ou les courants maximums de marée contribuent pour une part importante à la définition de la granulométrie locale.

Ces deux volets correspondent aux deux méthodologies présentées dans ce document, qui ont été mises au point séparément puis croisées dans leur représentation cartographique.

3. Méthodologie pour le volet hydrodynamique

3.1. Description des variables caractérisant l'environnement hydrodynamique

Le niveau de la mer, les courants, le mélange (la turbulence) et les facteurs affectant la densité des masses d'eau (température et salinité) décrivent l'hydrodynamique d'un secteur.

Le niveau marin varie selon différentes échelles de temps. La haute fréquence (quelques secondes de période) est due aux phénomènes d'agitation et de houle. A l'échelle de temps de la journée, la marée est le processus dynamique le plus apparent et celui qui est susceptible de créer les plus importantes variations du niveau de la mer. A ces effets, se superposent à des échelles de temps plus importantes (de la journée à la saison) les variations du niveau induites par la pression atmosphérique, le vent ou la circulation à l'échelle d'un bassin océanique.

De la même manière, les courants de haute fréquence sont générés par la houle. Ces courants peuvent être forts mais ils agissent principalement sur la turbulence et la capacité de remise en suspension de particules sédimentaires. A l'échelle de la journée les courants peuvent varier alternativement en fonction de la marée. Le transport à plus long terme est dû à la marée, au vent ou à la circulation océanique selon la zone et éventuellement la saison.

La densité de l'eau de mer dépend de la température et de la salinité. La température montre sur les côtes françaises un cycle saisonnier très marqué induit par la variabilité du rayonnement solaire. La salinité dépend des caractéristiques des eaux du large et des apports d'eau douce par les rivières.

Le mélange sur la verticale détermine la capacité du milieu à se stratifier. Cette stratification peut être thermique (l'eau la plus chaude recouvre de l'eau plus froide) ou haline lorsque la salinité est plus faible dans les couches de surface. Le mélange sur la verticale est induit par la turbulence du milieu. En zone côtière, cette turbulence peut être générée par le frottement du courant sur le fond (principalement les courants de marée) et par l'action du vent en surface.

3.2. Etude préalable

Dans un souci d'initialisation du processus de définition, l'échelle spatiale d'un secteur a été considérée de l'ordre de 20-50 km. Cette échelle a été

choisie de manière arbitraire mais dans l'objectif de disposer d'un nombre raisonnable de secteurs pour l'ensemble des côtes.

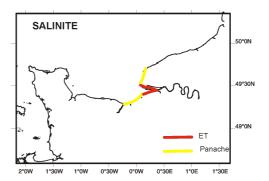
Parmi l'ensemble des paramètres potentiellement pertinents, le marnage et la salinité constituent des critères à prendre obligatoirement en compte.

Il a donc été proposé pour une première approche :

- □ Un classement du **marnage en 3 gammes** 0-1m , 1-4m et 4-11m qui identifient les 3 façades : Méditerranée, Atlantique et Manche. Le critère « marnage » utilisé seul n'est pas un paramètre discriminant pour la dynamique des masses d'eau (*vide supra*).
- □ La **salinité** peut être utilisée pour fixer la limite entre les eaux côtières et les eaux de transition. Un **seuil de 25 psu** est proposé sans qu'il revête de pas de signification hydrodynamique *a priori*. Il semble par contre correspondre à une réalité biologique notamment sur les espèces recensées dans les estuaires.
- Les panaches fluviaux des grands fleuves sont susceptibles d'influencer l'écosystème sur des distances importantes. On propose que les zones dont la salinité est fortement impactée par des fleuves avec un estuaire non inclus dans la zone soient référencées comme masse d'eau sous l'influence d'un grand panache. Plutôt que de fixer un seuil de salinité pour observer l'influence d'un panache, on propose de travailler par dessalures, ce qui permet de s'affranchir de la variation de la salinité de l'eau de mer non perturbée variable par façade. Un seuil de dessalure de 2 psu durant la moitié de l'année a été proposé dans cette approche préliminaire. Ce seuil permet de retrouver des échelles spatiales compatibles avec notre choix préalable d'échelle.
- □ Le mélange sur la verticale est un facteur hydrodynamique dont l'influence sur l'écologie est clairement démontrée. On propose d'utiliser le paramètre de stratification défini par Simpson et Hunter (1974) pour distinguer les eaux mélangées, partiellement stratifiées et stratifiées.
- □ Les courants à une échelle de temps supérieure à la marée caractérisent le renouvellement des eaux par transport. Il a été proposé d'utiliser les informations sur des **courants résiduels** et leurs trajectoires pour définir des zones de fort, moyen, faible et très faible renouvellements.
- □ La **profondeur moyenne** de la zone peut caractériser dans les mers à marée la taille des estrans et de manière générale, l'éclairement moyen reçu au fond par l'écosystème benthique.

3.2.1. Application de la proposition préalable à la zone comprise entre le mont Saint-Michel et la Baie de Somme

Marnage


Le marnage est parfaitement connu dans ce secteur, il varie d'environ 7,5 m à Saint Malo à 4 m à Cherbourg par marée moyenne. Ces différences sont sans rapport direct avec la courantologie. On considérera donc que tout le secteur est en zone de marnage fort.

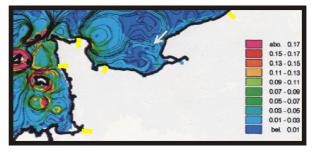
Séparation Eaux côtières/Eaux de transition

Parmi les différents apports d'eau douce, cette zone est marquée par l'estuaire de la Seine. La zone définie par le seuil de 25 psu s'étend des environs de Honfleur au Havre (Cugier, Le Hir 2001). L'isohaline 25 psu est bien entendu présente dans tous les estuaires même les plus réduits mais n'apparaîtra pas dans cette classification tant que le linéaire côtier concerné par les eaux de salinités inférieures à ce seuil reste inférieur à une vingtaine de km. En d'autres termes, les petits apports d'eau douce à la côte ne seront pas considérés comme faisant partie des eaux de transition en raison de l'échelle spatiale choisie.

Grands panaches fluviaux

L'évolution du panache de la Seine à été décrite par modèle numérique (Cugier, Le Hir 2001). Dans cette première approche on peut considérer que la zone sous l'influence du panache de la Seine s'étend de Ouistreham à Etretat.

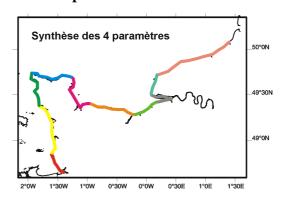
Capacité de mélange vertical


Le critère de Simpson et Hunter à été calculé à partir d'un modèle hydrodynamique 2D élaboré à Ifremer DEL/AO. Ce modèle calcule les courants de marée et en a déduit la valeur moyenne de ce paramètre pour une marée de coefficient 70. Quatre classes ont ainsi été définies, qualifiées de faible, moyen, fort et très fort.

Courants résiduels

L'information sur les courants résiduels utilisée pour cette proposition provient d'une étude à l'échelle de la Manche (Salomon et Breton 1991).

A partir de l'information sur les vitesses des courants résiduels exprimés en cm/s et leurs trajectoires, quatre secteurs ont été identifiés : un secteur du Mont St Michel à Carteret pour lequel le renouvellement des masses d'eau est moyen. Un secteur de forts courants résiduels induisant un renouvellement important de Carteret à la pointe de Barfleur. Un secteur de forts courants résiduels de la pointe de Barfleur à Grandcamp mais faisant partie d'un vaste tourbillon qui en limite les capacités de renouvellement. Enfin, un secteur de renouvellement moyen de Grandcamp au Tréport.



Profondeur moyenne

Les profondeurs varient de valeurs très faibles au voisinage de la Baie du Mont St Michel à des valeurs moyennes au large du Cotentin. Lors d'un premier essai, le paramètre profondeur était remplacé par le paramètre « taille de l'estran ». Ce paramètre faisant apparaître alors clairement la partie Nord de la zone correspondante aux falaises de Seine Maritime.

Le principal problème soulevé par l'utilisation d'un paramètre relatif aux estrans soulève alors celui de l'applicabilité à la Méditerranée.

Zonage issu de l'étude préalable :

La méthode proposée a fait finalement apparaître 10 secteurs pour 9 types de masse d'eau dont les caractéristiques sont résumées dans le tableau 1 ci-dessous (EC : eaux côtières, ET : eaux de transition)

Tableau 1 : Définition préalable des masses d'eau naturelles (Manche)


	Salinité	Influence	Mélange	Courants	profondeurs
		panache		résiduels	
Mt Saint Michel	EC	-	Fort	Moyen	Très faibles
Granville					
Granville	EC	-	Fort	Moyen	Faibles
Carteret					
Carteret	EC	-	Très fort	Moyen	Faibles
Cap de la Hague					
Cap de la Hague	EC	-	Très fort	Fort	Moyennes
Point de Barfleur					
Pointe de Barfleur	EC	-	Fort	Fort-	Faibles
Grandcamp				Tourbillon	
Grandcamp	EC	-	Moyen	Moyen	Moyennes
Ouistreham					
Ouistreham	EC	Seine	Moyen	Moyen	Moyennes
Honfleur					
Estuaire de la Seine	ET	Seine	Moyen	Moyen	Moyennes
Le havre	EC	Seine	Moyen	Moyen	Moyennes (mais
Etretat					estran très
					restreints)
Etretat	EC		Fort	Moyen	Moyennes (mais
Tréport					estran très
_					restreints)

3.2.2. Applicabilité de la proposition préalable à la Méditerranée

La méthodologie proposée s'est avérée applicable dans ses grandes lignes à la Méditerranée avec toutefois les différences suivantes :

- Le paramètre « critère de stratification » tel que l'ont défini Simpson et Hunter n'est plus calculable. La bibliographie nous montre que tout le secteur marin est stratifiable en Méditerranée. Seules les lagunes ont une stratification variable qui peut voir alterner en fonction de la saison, des vents et des apports fluviaux très locaux, de longues périodes homogènes avec quelques épisodes stratifiés durant les périodes de vents faibles.
- □ La limite de 25 psu permettrait de définir un secteur eaux de transition dans le delta du Rhône. Dans cette étude préalable, il a semblé qu'en raison de l'échelle spatiale adoptée pour cette typologie, seules les eaux du Rhône pourraient figurer en eaux de transition.
- De même, une bibliographie préalable n'a fait apparaître que le Rhône comme fleuve susceptible de générer un panache d'ampleur régionale.
 Ce panache se déplace principalement sous les effets du vent et des fluctuations du courant Ligure. Pour figurer cette zone, une approche préliminaire fait apparaître la zone comprise entre le Cap Croisette (sud de Marseille) et la pointe de l'Epiguette comme zone sous l'influence du panache du Rhône.
- Les courants résiduels de marée n'ont pas de sens en Méditerranée. Les courants à des échelles de temps supérieures à la marée ou à la journée sont générés par le vent local ou la circulation à l'échelle du bassin occidental *i.e.* le courant Ligure. A la différence de la Manche ou de la partie nord du plateau Atlantique, le vent crée des circulations complexes généralement tridimensionnelles. Quand le vent souffle durant plusieurs jours parallèlement à la côte, des upwellings (remontées d'eau) peuvent apparaître : le courant en surface est dirigé vers le large, dans les couches inférieures, un courant de compensation se dirige en sens inverse et marque un mouvement ascendant près de la côte. Les upwellings sont des zones de très fort renouvellement des eaux. Ils ont, à l'inverse des courants résiduels de marée, la caractéristique d'être occasionnels le long des côtes métropolitaines.
- □ La profondeur moyenne est très discriminante, puisque la façade Méditerranéenne est marquée par une absence de plateau continental au large de la côte d'Azur et la présence d'un large plateau dans le golfe du Lion.

Selon ces critères et dans le cadre de l'étude préalable, les critères proposés permettraient donc de distinguer 8 secteurs pour 5 types de masses d'eau pour le littoral méditerranéen.

La valeur des critères pour chaque secteur ainsi défini est présentée dans le tableau 2 ci-dessous :

Tableau 2 : Définition préalable des masses d'eau naturelles (Méditerranée)

	Salinité	Influence	Mélange	Renouvellement	Prof.
		panache	vertical		
Menton-St Raphael	EC	-	Faible	Fort	Grande
St Raphael-	EC	-	-id.	Moyen	Moyenne
Cap Sicié					
Cap Sicié-	EC	-	Id.	Moyen (upwelling)	
Cap Croisette					Moyenne
Cap Croisette	EC	-Rhône	Id.	Moyen	Moyenne
Estuaire					
Estuaire du Rhône (à	ET	-	Id.	Moyen	Faible
préciser)					
Estuaire-	EC	Rhône	Id.	Moyen	Faible
Pointe de l'Epiguette					
Pointe de l'Epiguette	EC	-	Id.	Moyen	Faible
Cap Béar					
Cap Béar-	EC	-	Id.	Moyen	Moyenne
Cap Cerbère					

3.3. Mise en œuvre de la méthode retenue

3.3.1. Utilisation de modèles

Afin évaluer les critères physiques importants décrits auparavant nous avons utilisé le modèle hydrodynamique MARS 2D de l'Ifremer. Ce modèle numérique résout selon une méthode semi-implicite les équations complètes de Navier-Stokes intégrées sur la verticale. Pour cette application, seule la dynamique de la marée a été simulée afin de mettre en évidence les caractéristiques déterministes de la circulation.

Pour mieux appréhender la dynamique sur tout le littoral mer du Nord, Manche et océan Atlantique, huit modèles ont été élaborés avec une résolution de 300 mètres. Pour chaque modèle, une marée moyenne (coefficient 70) a été simulée. Le tableau 3 résume l'emprise géographique des modèles.

Tableau 3 : Emprise géographique des modèles hydrodynamiques

	Limite nord	Limite sud	Limite est	Limite ouest
Nord	51.35N	49.97N	3.51E	1.28E
Normandie	50.00N	48.54N	1.27E	2.12W
Bretagne nord	49.09N	48.45N	1.30W	3.92W
Bretagne Finistère	48.99N	47.60N	3.53W	5.36W
Bretagne sud	48.01N	47.15N	1.68W	4.32W
Vendée	47.70N	46.43N	1.45W	3.15W
Charentes	46.72N	44.80N	0.35W	2.00W
Landes	45.35N	43.24N	0.99W	2.12W

L'ensemble de ces modèles nous fournit l'évolution des courants instantanés au cours de trois cycles de marée ainsi que les courants résiduels. C'est à partir de ces résultats que nous allons analyser la sensibilité de chacune de ces régions aux critères hydrodynamiques définis ci-dessous.

3.3.2. Classification hydrodynamique

Il s'agit d'élaborer une classification cohérente sur l'ensemble du littoral afin de bénéficier d'une représentation hydrodynamique homogène du littoral. Conformément à la typologie proposée, 3 critères hydrodynamiques ont été calculés à partir du modèle:

- Le courant résiduel caractérise le mouvement à long terme d'une particule d'eau au-delà du cycle lié au mouvement alternatif de la marée. Il détermine directement le renouvellement des eaux. Les trajectoires résiduelles ont été utilisées dans la mesure du possible pour séparer les différentes zones alors que le module du courant à permis d'évaluer la capacité de renouvellement de ces zones. Trois classes ont été définies correspondant aux limites du module du courant résiduel respectivement fort (supérieur à 0.04m/s), moyen (0.02-0.04 m/s) et faible (inférieur à 0.02 m/s).
- □ Le mélange vertical qu'on quantifie à l'aide du paramètre de Simpson et Hunter (log10(H/U3)), qui témoigne de la capacité des zones étudiées à stratifier ou non. Trois classes sont définies fort, moyen, faible respectivement stratifiée (Simpson et Hunter compris entre 0 et 2.5), partiellement stratifiée (Simpson et Hunter compris entre 2.5 et 3.5) et mélangée (Simpson et Hunter compris entre 3.5et 5.0)
- L'influence des grands panaches: Elle est limitée aux panaches des grands fleuves comme la Seine, la Loire, la Gironde ou le Rhône. La dynamique des grands panaches fluviaux n'est pas décrite par ces modèles 2D mis en place mais par des modèles 3D beaucoup plus complexes qui s'attachent à décrire la dynamique à des échelles de temps au moins saisonnières voire pluri-annuelle. La description du devenir des eaux de la Gironde et de la Loire a été effectuée par Lazure et Jegou (1998), celle du devenir des eaux de la Seine par Cugier et Le Hir. Le devenir du panache du Rhône a été discuté 'à dire d'expert' (P. Garreau com.pers.) et sur la base des travaux de Millot (1990)

Afin d'augmenter la cohérence de la méthode proposée avec les guidances européennes, le critère d'exposition à la houle a été utilisé. Cette classification s'est effectuée 'à dire d'expert' et sur la base des documents du CETMEF. Trois classes ont été retenues:

- □ abritée: elle concerne les baies semi-fermées telle que le bassin de Marennes Oléron.
- □ semi-exposée: il s'agit principalement de zones exposées en Manche où le fetch est limité à quelques centaines de kilomètres et limite donc la génération de fortes houles, alors que la présence des côtes ne permet

pas la propagation dans la manche de houle longue de l'Atlantique Nord. L'ensemble des zones définies en Méditerranée se situe dans cette classe.

□ Exposée: elle concerne certaines régions qui ne sont pas abritées sur le littoral du Golfe de Gascogne telles que la pointe du Finistère ou le pays Basque.

Pour l'élaboration du zonage hydrodynamique nous avons appliqué ces critères sur tout le littoral de la côte à la limite de un mille par rapport à la ligne de base et dans les eaux territoriales (12 milles).

4. Méthodologie pour le volet nature du substrat

4.1. Etat des connaissances :

Première étape indispensable de ce travail, il a été procédé à un inventaire des données sédimentologiques disponibles sous la forme de cartes papiers ou géoréférencées (shape ou raster). Il a montré une grande hétérogénéité des environnements sédimentaires rencontrés sur les façades Manche, Atlantique et Méditerranée dont les raisons sont d'ordres hydrodynamiques, liées à l'héritage géologique et à l'importance des apports actuels.

Les données sédimentaires utilisées proviennent de cartes publiées, de rapports et de thèses notamment pour la côte méditerranéenne (cf. § 6. Bibliographie). Plus de 90 cartes ont été utilisées allant du 1/7500 au 1/500 000 (cf. fig. 1). Leur interprétation dans le cadre de la DCE a fait apparaître plusieurs difficultés majeures :

- Une précision temporelle très variable puisque ces cartes datent des années 1960 à 2002. Dans les secteurs où l'envasement peut être rapide, dans la frange côtière à forte dynamique sédimentaire ou dans les zones nouvellement et rapidement colonisées par diverses biocénoses, les vieilles données fournissent une représentation erronée de la répartition des sédiments.
- □ Une couverture de répartition inégale entre le nord et le sud avec pour la Manche et la Bretagne, un large éventail de documents à différentes échelles et différentes époques. Les données sur les côtes méditerranéennes sauf la Corse sont généralement plus anciennes, obtenues à partir de prélèvements ponctuels. Dans les zones richement cartographiées, le choix s'est porté sur les données les plus récentes.
- □ Une précision des documents très variable en fonction de l'échelle de restitution. Le meilleur compromis étant par rapport à la surface moyenne des cellules hydrodynamiques, une échelle allant du 1/25 000 au 1/50 000 pour la zone à 1 mile et de 1/50 000 au 1/100 000 pour les eaux territoriales (12 miles).
- Les classifications sédimentaires adoptées dans ces documents ont été également interprétées différemment du fait de la nature des données exploitées (acoustique et/ou prélèvements). A titre d'exemple, la carte des sédiments de la Manche (Vaslet et al., 1978) comptent environ 60 faciès sédimentaires, celle au large de Bayonne, 4 types uniquement.

Il est donc naturellement apparu la nécessité d'intégrer dans la typologie sédimentaire définie selon un critère " nature de fond", une caractérisation des zones selon leur surface de représentation spatiale par rapport aux surfaces des zones hydrodynamiques.

4.2. Classification sédimentaire retenue :

L'interprétation de la diversité des faciès sédimentaires doit rendre compte de façon cohérente de la grande hétérogénéité des environnements sédimentaires depuis la frontière belge jusqu'aux côtes méditerranéennes. Il s'agit notamment de bien différencier les zones envasées en raison de leur pouvoir de concentration des polluants, les zones sédimentaires en relations avec les principaux habitats et les fonds durs pour leurs spécificités et la richesse de leurs écosystèmes particulièrement sensibles aux changements de qualité des masses d'eaux. Cinq faciès sédimentaires ont ainsi initialement été définis.

4.2.1. Les sédiments envasés :

Il s'agit d'une zone où les sédiments ont une teneur en vase dépassant 5 à 10 % du poids du sédiment. Elle regroupe aussi bien des faciès détritiques que carbonatés du plus fin au plus grossiers. On y retrouve les faciès vaseux, sablo-vaseux, vaso-sableux, plus rarement les sédiments graveleux ou caillouteux envasés, mais également les biocénoses à maërl, à crépidules envasées ainsi que les herbiers envasés. Ces faciès s'observent préférentiellement en fond de baie, à l'embouchure des fleuves, dans les fosses et au large sur la plate-forme. Dans les eaux côtières (limite à 1 mile), les zones de sédiments envasés ont été définies avec une meilleure précision que pour les autres faciès.

4.2.2. Zone homogène sableuse :

Il s'agit d'une zone où la teneur en sables est très majoritaire (> 60 %). Elle regroupe les sédiments de type sable très fin, sable fin, sable moyen et sable grossier. Elle caractérise le prisme sableux littoral, l'accumulation au fond des baies, les grands placages sableux sur la plate-forme atlantique ou corse.

4.2.3. Zone homogène grossière :

Elle est composée d'une couverture sédimentaire souvent peu épaisse constituée d'éléments granulométriques de la taille des graviers, des cailloutis, des galets ou plus rarement de blocs hétérométriques mélangés à une faible fraction sableuse selon des pourcentages variables : 15 % minimum de graviers, 20 à 25 % minimum de cailloutis. On distingue également les zones de roches sub-affleurantes mal définies. On associe à ces fonds grossiers une forte dynamique sédimentaire sur la plate-forme. On y retrouve les graviers et les cailloutis purs, les mélanges cailloutis et graviers ainsi que graviers et sables dans des proportions variables. Les sédiments carbonatés à maërl et crépidules ainsi que les thanathocénoses diverses ont été regroupés dans cet ensemble.

4.2.4. Zone hétérogène à caractère sédimentaire :

Il s'agit d'une zone regroupant plusieurs des 4 natures de fond sans que leurs surfaces soient de taille suffisante pour les isoler. Celle classe permet de ne pas morceler de façon trop conséquente les zones définies selon les caractéristiques de la masse d'eau. Les herbiers à Posidonies fréquemment rencontrés sur les côtes de Provence et de Corse ont été interprétés dans ce type non seulement pour les différencier mais aussi en raison de la nature du substrat sur lequel elles se fixent, parfois dur ou sableux.

4.2.5. Zone hétérogène à caractère rocheux :

Elle se présente sur les cartes sous la forme d'un substrat dur parfois massif et peu fracturé ou d'aspect éclaté composé alors par l'agglomération de hauts fonds séparés par des couloirs sédimentaires. Dans la réalité, comme le montrent les images sonar ou les photos aériennes sur l'estran, ces zones rocheuses sont très souvent discontinues, faillées, entrecoupées de couloirs sédimentaires et recouvertes d'un manteau fins de sédiments grossiers et sableux, renforçant leur aspect hétérogène. Elles prolongent les côtes à falaises (Picardie, massif armoricain, Méditerranée) et plus au large les îles et archipels.

4.3. Cartographie de la nature du substrat

Sur la base de la classification retenue, la nature du substrat de l'ensemble du littoral français a été cartographié, en s'appuyant sur la cartographie des secteurs définis dans le volet hydrodynamique. Il en a résulté la délimitation de 496 secteurs définis par une série d'attributs hydrodynamiques et sédimentologiques.

5. Limites cartographiques

5.1. Nature des limites nécessaires à la cartographie

Pour la réalisation des cartes, les polygones générés comportent des limites purement thématiques (limites de masses d'eau ou de sédiment), mais aussi certaines limites réglementaires. En l'attente des données de référence qui doivent être élaborées par le SHOM, deux limites réglementaires ont été générées par l'Ifremer dans le cadre de cette étude :

- □ La limite des eaux côtières, située à 1 mille en aval de la ligne de base (limite qui peut être le cas échéant étendue vers le large pour englober la totalité des "Eaux de transition").
- ☐ La limite des « Eaux territoriales ».

Les cartes de ces limites réglementaires et de la ligne de base figurent à l'annexe 2.

5.2. Modalités de construction de la limite des Eaux côtières

La ligne de base est la ligne à partir de laquelle sont calculées les limites extérieures des Eaux territoriales (Convention de Montego Bay. Elle se détermine selon des règles du droit international), la proposition de l'état côtier est déposée à l'ONU. La ligne de base normale est "la laisse de basse mer telle qu'indiquée sur les cartes marines à grande échelle reconnues par l'Etat côtier". La Convention de Montego Bay permet, pour la construction de la ligne de base, de tracer des lignes de base droites en cas de cote complexe ou de baies. Le décret du 19/10/1967 définit les lignes de base droites pour la France métropolitaine. Les bancs isolés, situés à l'extérieur des lignes de base droite, et a moins de 12 milles du continent ou d'une île, sont également pris en considération pour le calcul des Eaux territoriales.

Pour cette étude, le zéro hydrographique, utilisé comme ligne de référence par défaut, est celui du SHOM au 1:50 000 (en l'absence de la disponibilité du zéro hydrographique sur les Roches Douvres, le trait de cote a été utilisé); en Méditerranée c'est le trait de cote qui a été utilisé. Les lignes de base droite et les lignes de fermeture des baies, résultant d'accords internationaux, proviennent de la BD REGMAR du SHOM.

L'IFREMER a assuré l'ensemble des opérations nécessaires pour assurer la continuité géométrique des arcs de la ligne de base. L'origine des arcs est conservée dans la table attributaire des arcs. Les bancs et objets isolés, situés à l'extérieur des lignes de base droite et utilisés dans le calcul, sont principalement : les Chausey, les Roches Douvres et le plateau de Cordouan ainsi que des phares et tourelles (Nord Ouessant, ancienne tourelle Ken ; Port de Kerity-Penmarc'h, tourelles Le Raguen et Le Ruinec ; Belle-Ile, tourelle La Truie de Bangor ; Var, ouest des îles des Embiez, tourelle Les Magnons ; Var île du Levant, tourelle de L'Esquillade ; Var abords d'Agay, tourelle de La Chrétienne ; Var St Tropez, tourelle cardinale Est-La Moutte ; Hérault Le Cap d'Agde, tourelle de La Lauze ; Corse îles Lavezzi, Ecueil Tourelle).

La justification et l'intérêt de leur prise en considération pour la définition des "Eaux côtières", au sens de la directive cadre "Eau", mériterait d'être débattue. L'échelle du fichier résultat est 1:50 000. La limite des eaux côtières a été déduite par calcul de distance (1 mille) à partir des arcs ou des objets de référence mentionnés ci-dessus.

5.3. Modalités de construction de la limite aval des eaux territoriales et des limites substitutives

La limite des eaux territoriales, définie par la Convention de Montego Bay, délimite en aval la zone de souveraineté de l'état riverain. Les eaux territoriales françaises s'étendent jusqu'a 12 milles marins à partir des lignes de base. Les frontières maritimes déterminent en mer les limites entre états adjacents ou se faisant face et font l'objet d'accords internationaux.

Des conventions lient la France avec les états voisins (Belgique et Royaume Uni : Pas de Calais et Manche ; Espagne : Golfe de Gascogne ; Monaco ; Italie : Bouches de Bonifacio). Les limites figurant sur les cartes marines sont les données officielles. A noter l'existence d'une zone de double compétence franco-espagnole au niveau de la frontière avec l'Espagne en Atlantique.

Certaines limites ne sont pas définies ou les accords ne sont pas signés : accord en cours a Guernesey ; limite conflictuelle avec l'Espagne en Méditerranée ; pas d'accord pour l'Italie continentale et l'est de la Corse.

Dans ce cas, des limites arbitraires ont été introduites sur la base de calculs de distances ou d'accords préexistants (pour la pêche par exemple). Ces limites substitutives n'ont pas de valeur légale, elles sont uniquement destinées à offrir un cadre de travail réaliste en vue des réflexions liées à l'application de la directive.

Les arcs disponibles dans la base de données SHOM REGMAR BDGS ont été utilisés. Dans le fichier résultat, deux attributs permettent

d'identifier le statut de la limite (accords internationaux, accord en cours, limite arbitraire...) et son origine (buffer 12 milles, accord de pêche...).

Les polygones « Eaux côtières » et « Eaux territoriales » ont été générés en utilisant coté terre le trait de côte SHOM 1/25 000 dont la continuité a été assurée. Ce fichier représente le trait de côte sécurisé pour la navigation. Bien que pénétrant plus en amont des estuaires que la « laisse de haute mer » de la BD Carto, certains fonds d'estuaires non représentés dans des cartes marines peuvent être mal représentés.

5.4. Données fournies

Le CDROM qui restitue au MEDD les résultats de la présente étude de typologie des eaux contient au format fichier de formes les différentes lignes décrites ci-dessus, ainsi qu'un document au format HTML des métadonnées de ces entités cartographiques.

6. Synthèse : définition des masses d'eau naturelles

6.1. Présentation et discussion des résultats

Les résultats obtenus par l'application des méthodologies proposées ont été présentés au groupe de travail DCE Eaux littorales lors de deux réunions, le 8 octobre 2002 pour la partie hydrodynamique, et le 6 novembre 2002 pour l'ensemble hydrodynamique et géomorphologique. Le présent travail avait pour but premier de définir des **types** de masses d'eau, et les **secteurs** (zones) sur lesquelles ils s'appliquent.

Pour clarifier la terminologie, il a été décidé d'utiliser les termes suivants, pour qualifier des notions non spécifiquement définies dans la DCE :

- masse d'eau naturelle hydrodynamique = la (les) représentations géographiques des secteurs correspondant à un type provisoire défini sur la base des facteurs de typologie hydrodynamiques, c'est-à-dire résultant de la 1ère phase du travail de typologie (rendu au 8/10/02)
- □ **masse d'eau naturelle** = la (les) représentations géographiques des secteurs correspondant à un type défini sur la base des facteurs de typologie hydrodynamiques <u>et</u> géomorphologique, c'est-à-dire résultant de la 2^{ère} phase du travail de typologie (rendu au 6/11/02)

Les discussions ont fait apparaître la nécessité de définir le processus qui conduira à la délimitation ultime des masses d'eau au sens de la DCE par les districts. En effet, malgré une agrégation déjà importante au cours du processus de définition, les types de masses d'eau naturelles restent en nombre important. Par ailleurs, les documents d'orientation européens recommandent seulement 4 classes pour la nature du substrat.

Pour fournir une base de travail élargie aux groupes de district, une fusion des faciès a été souhaitée avec un scénario à 4 types sédimentaires et 3 types sédimentaires (cf. tableau 4).

Une typologie à 4 classes avec regroupement des classes 2 et 3 peut présenter l'avantage d'être comparé plus facilement avec la typologie proposée dans le documents d'orientation, et donc à terme avec les types de masses d'eau définis dans les autres pays européens. Néanmoins on constate que la différence (moins de 20 zones) avec la typologie de référence à 5 classes est faible au regard de la cohérence et de l'intérêt de cette typologie par rapport aux aspects biologiques.

Tableau 4 : Synthèse du nombre de zones en fonction du nombre de classes sédimentaires (eaux côtières et eaux de transition)

Id	Classe sédimentaire	5 classes	4 classes (2+3)	3 classes (2+3+4)
1	Zone envasée	155	155	155
2	Zone homogène sableuse	107	120	
3	Zone homogène grossière	24	120	144
4	Zone hétérogène à caractère sédimentaire	95	95	
5	Zone hétérogène à caractère rocheux	100	100	100
	TOTAL	481	470	399

Une autre approche pour réduire le nombre de types et de masses d'eau naturelles et de déterminer un faciès dominant appliqué aux masses d'eau naturelles hydrodynamiques. Cette démarche devrait être conduite avec prudence par les groupes de travail de district, et un consensus sur la méthodologie définitive devra être trouvé par le groupe DCE Eaux littorales national.

Pour permettre la mise en œuvre de cette approche, les tableaux fournis en annexe 3 donnent les surfaces de masses d'eau naturelles par type et par masse d'eau naturelle hydrodynamique, dans les 3 cas de classification sédimentaire.

6.2. Cas des eaux frontalières.

A la demande du groupe de travail DCE Eaux littorales, les caractéristiques des masses d'eaux au-delà des frontières belges, espagnoles et Italiennes ont été examinées. Aucune carte morphosédimentaire française n'est disponible sur ces zones. Il toutefois possible de formuler les conclusions suivantes :

- Au-delà de la frontière belge, et sans doute sur toute la façade belge, les caractéristiques hydrodynamiques de l'eau ne changent pas. Toutefois, on se trouve là à la limite d'extension du modèle hydrodynamique. La nature des fonds est aussi en continuité avec ceux de la partie française, jusqu'à l'approche de l'estuaire de l'Escaut, qui va progressivement évoluer vers une zone plus envasée.
- □ Au-delà de la frontière espagnole Atlantique, on se trouve au-delà de l'emprise du modèle. Il est vraisemblable que les caractéristiques de courant résiduel, mélange et houle soient dans les mêmes modalités (moyen, faible, fort resp.) que celles de la zone française contiguë (N°59).

Au-delà des frontières espagnoles et italiennes méditerranéennes, On peut dire que les caractéristiques ne vont pas être modifiées par rapport à la zone française contiguë, au moins jusqu'au cap Creus en Espagne, et le Cap Mele en Italie.

6.3. Résumé des types et masses d'eau

La combinaison des critères de définition des types de masse d'eau conduit à un nombre élevé de types, de 90 à 124 selon le nombre de classes choisi (cf. tableau 5 ci dessous).

Tableau 5 : Récapitulatif de l'effet du groupement des classes sédimentaires

	5 classes	4 classes	3 classes
Nb de masses d'eau naturelles	71	71	71
hydrodynamiques (côtière et de transition)			
Nb de masses d'eau naturelles (côtière et de	481	470	399
transition)			
Nb de types d'eau côtière théoriques (max)	360	288	216
Nb de types d'eau côtière rencontrés	119	108	87
Nb de types d'eau de transition rencontrés	5	4	3
Nb de masses d'eau naturelles côtière	455	446	373
Nb de masses d'eau naturelles de transition	25	24	23

Dans cette étape intermédiaire, avant que les districts n'appliquent cette proposition de typologie en fonction de leurs impératifs régionaux, et comme il n'est pas possible de trouver une appellation simple pour ces très nombreux types de masses d'eau, la convention décrite ci-après a été retenue et utilisée dans l'annexe 3.

L'intitulé d'un type de masse d'eau est constitué par les modalités prises par les différents critères, dans l'ordre et avec les modalités des tableaux 6 et 7 ci-dessous :

Tableau 6 : codage des critères de la typologie

Critère	Code des modalités	
Eau de transition	0=non, 1=oui	
Mélange	1=faible, 2=moyen, 3=fort	
Courant résiduel	1=faible, 2=moyen, 3=fort	
Houle	1=abrité, 2=semi-exposé, 3=exposé	
Panache	0=non, 1=oui	
Type de sédiment	Cf tableau 7	

Tableau 6 : codage du critère nature du sédiment

Modalités	Code			
5 classes de sédimen	t			
Zone envasée	1			
Zone homogène sableuse	2			
Zone homogène grossière	3			
Zone hétérogène à caractère sédimentaire	4			
Zone hétérogène à caractère rocheux	5			
4 classes de sédiment				
Zone envasée	1			
Zone homogène sédimentaire non envasée	2			
Zone hétérogène sédimentaire non envasée	3			
Zone hétérogène rocheuse non envasée	4			
3 classes de sédiment				
Zone envasée	1			
Zone hétérogène sédimentaire non envasée	2			
Zone hétérogène rocheuse non envasée	3			

6.4. Données fournies

Le CDROM qui restitue au MEDD les résultats de la présente étude de typologie des eaux contient au format fichier de formes la cartographie de l'ensemble des masses d'eau identifiées, les images au format JPEG de ces cartes, ainsi que le présent rapport.

7. Bibliographie

Hydrodynamique

Cugier, P., Le Hir, P. 2001: Development of a 3D hydrodynamic model for coastal ecosystem modelling. Application to the plume of the Seine river (France). Estuarine, Coastal and Shelf Science, in press.

Goasguen, G., Sanquer, R. 2000. Classes des navires à passagers, rapport 2, CETMEF

Lazure, P., Jegou, A.M., 3D 1998. Modelling of seasonal evolution of Loire and Gironde plumes in the Bay of Biscay continental shelf, Oceanologica Acta, 21, 2: 165-177.

L'Her, J., Royard, M. 1999. Classes des navires à passagers, rapport 1, CETMEF

Millot, C. 1990. The Gulf of Lions hydrodynamics. Continental Shelf Research. 10: 885-894

Simpson Hunter, 1974: Fronts in the Irish sea. Nature, **250**, 404-406.

Salomon JC, Breton M. 1991: An atlas of long-term currents in the Channel. Oceanologica Acta, 16, 439-448.

Géomorphologie Méditerranée

Baglinière Catherine (1978). Répartition et évolution des substances nutritives dans l'eau interstitielle des sédiments de la marge continentale le long de la côte d'azur. Thèse 3^{ème} cycle, Université de Paris VI, 100 p.

Blanc Jean J. (1975). Recherches de sédimentologie appliquée au littoral rocheux de la Provence. Aménagement et protection. Rapport CNEXO, 164 p.

Blanc J., Picard F., Franza M. et Jeudy de Grissac A. (1973). Recherches sur les gites sous-marins de sables et graviers sur le précontinent de la Provence occidentale. Rapport d'études CNEXO, 72/475, 42 p. + cartes.

Blanc Jean J. (1977). Recherches de sédimentologie appliquée au littoral du delta du Rhône, de Fos au Grau du Roi. Rapport CNEXO, 75/1193, 69 p.

Blanc Jean J. (1977). Recherches de géologie sédimentaire sur les herbiers à posidonies du littoral de la Provence. Rapport d'études CNEXO, 76/4043, 84 p.

Bourgeois Robert, Cacan Christian, Monnet Monique et Tofani Roger (1975). Les fonds marins du golfe Juan (A.M.) un modèle

sédimentologique ou un cas particulier ? Perspectives d'aménagement. Thèse 3^{ème} cycle, Université de Nice, 2 tomes + annexes.

Catalogue sédimentologique des côtes françaises. (1984). Côtes de la Méditerranée de la frontière espagnole à la frontière italienne. Laboratoire National d'Hydraulique, 290 p.

Kremer Yves (1975). Littoral et précontinent de Menton (Alpes Maritimes). Morphologie, sédimentologie et structure, Mémoire de l'Institut Océanographique de Monaco, 9, 43 p., 24 fig.

Nesteroff W. (1965). Recherches sur les sédiments marins actuels de la région d'Antibes. Thèse, annales de l'institut océanographique, Tome XLIII, fascicule 1, 136 p.

Rapin François (1980). Les sédiments des baies de Nice et de Villefranche-sur-mer : (Méditerranée, France), Etude Sédimentologique et géochimique. Thèse 3^{ème} cycle, Université de Genève, 139 p.

Weydert Pierre (1975). Mise en évidence dans la baie de Marseille (France) de modifications sédimentologiques résultant de variations météorologiques. Ixième Congrès International de Sédimentologie, Nice, p. 213-219.

Annexe 1 : description des paramètres hydrodynamiques choisis

Le Marnage

Définition du paramètre :

Le marnage est la différence du niveau moyen entre la pleine mer et la basse mer. Le marnage varie en fonction du coefficient de marée.

Description le long des côtes françaises :

Le marnage montre une grande variabilité le long des côtes de métropole. Il est très faible en Méditerranée (inférieur à 50 cm). Il varie assez peu le long du littoral atlantique (de 2,8 m à Saint Jean de Luz à 4,3 m Brest en marée moyenne). Sa variabilité est proportionnellement plus importante en Manche puisque le marnage varie de 4 m à Cherbourg à plus de 8 m à Saint Malo en marée moyenne.

Interprétation, caractère discriminant :

Du fait de son importante variabilité et de sa connaissance parfaite sur le littoral, le marnage pourrait apparaître comme un paramètre très discriminant. Toutefois, il n'existe pas de relation directe entre le marnage (qui ne concerne que le niveau marin) et les courants de marée. Les seules informations objectives apportées par le marnage sont les surface exondées et temps d'exondation si l'on dispose de la bathymétrie. On ne peut par contre pas utiliser le marnage pour tenter de caractériser des taux de renouvellement ou des vitesses critiques d'érosion.

Disponibilité, accessibilité de la donnée :

Le marnage est parfaitement connu sur tout le littoral français, outre mer compris grâce aux mesures du Service Hydrographique et Océanographique de la Marine (SHOM).

La salinité

Définition du paramètre :

Salinité : quantité de sel par kg d'eau de mer

Interprétation, caractère discriminant :

Facteurs affectant la salinité

La salinité est en général une représentation de la quantité d'eau douce dans le milieu. Toutefois, la salinité de l'eau du large que l'on peut considérer comme étant non perturbée par les apports d'eau douce varie selon les façades maritimes. Au centre de la Manche, la salinité est de l'ordre de 35 psu, en Atlantique de 35,5 psu et en méditerranée de 38 psu. Une baisse de salinité (ou dessalure) de 1 psu correspond à un pourcentage d'eau douce de 1/35,5 éme soit environ 2%.

Les lagunes sont des cas particuliers, elles peuvent présenter temporairement des salinités supérieures à la salinité au large à cause de l'évaporation.

Variabilité spatiale et temporelle

Chaque apport d'eau douce est caractérisé par un panache de salinité qui correspond au mélange progressif des eaux fluviales et des eaux marines. Les dimensions de ces panaches dépendent des caractéristiques hydrodynamiques du secteur et des débits des rivières.

A débit équivalent, la dimension des panaches de salinité sera plus restreinte si le mélange est important. En cas de mélange vertical faible, les eaux douces ou peu salées étant plus légères, elles restent confinées dans la couche supérieure de la mer et sont susceptibles de se propager plus loin vers le large.

De même, à capacité de mélange et apports équivalents, les panaches seront plus étendus si les courants sont importants. Par contre, un confinement conduira à des dessalures plus importantes.

Aux gradients spatiaux, s'ajoute une variabilité temporelle généralement forte, liée à la variabilité temporelle des débits et des conditions hydrodynamiques. Ce dernier facteur est d'autant plus important que la courantologie est peu influencée par la marée (globalement : partie Sud du littoral Atlantique et Méditerranée).

Disponibilité, accessibilité de la donnée :

La connaissance de la salinité se fonde sur les mesures et les modèles hydrodynamiques. De nombreuses études ont décrit le devenir des eaux issues des grands fleuves.

Indice de stratification

Définition du paramètre :

L'indice de stratification défini par Simpson et Hunter (74) correspond à la moyenne sur un cycle de marée de la variable H/U³.

Interprétation, caractère discriminant :

Ce paramètre caractérise la capacité des courants de marée à mélanger verticalement la colonne d'eau. Quand les courants sont importants, la turbulence induit par le frottement du courant sur le fond génère de la turbulence qui se répartit sur la colonne d'eau et peut pour certaine valeur de ce paramètre caractériser des zones qui seront tout le temps mélangées, stratifiées ou intermédiaires.

Disponibilité, accessibilité de la donnée :

Ce paramètre résulte d'un calcul sur la moyenne d'un cycle de marée. Il est difficilement calculable à partir des mesures et nécessite en général un modèle hydrodynamique.

Courants résiduels

Définition du paramètre :

On appelle courant résiduel, le courant moyen exprimé à une échelle de temps supérieure à la marée (typiquement la journée).

Interprétation, caractère discriminant :

La notion de courant résiduel est apparue pour caractériser les effets à long terme des courants de marée. En effet, les courants de marée sont composés d'une composante oscillante qui transporte les masses d'eau et les ramène à leur point de départ au bout d'un cycle de marée et d'une composante à long terme appelée courant résiduel.

A titre d'exemple, le calcul des courants résiduels de marée en Manche a permis de mettre en évidence le transit général d'Ouest en Est des eaux dans la Manche. Des particularités locales sont également apparues telles que les zones à fort renouvellement, les zones confinées (Baie de Lannion ou de Saint Brieuc par ex.) ou les grands tourbillons autour des îles anglonormandes ou dans la partie Ouest de la baie de Seine (tourbillon de Barfleur).

Dans les mers sans marée ou à marée très faible, le courant résiduel exprime le courant moyen à des échelles de temps supérieures à la journée. Le vent et les courants océaniques sont alors les moteurs du renouvellement des eaux.

Disponibilité, accessibilité de la donnée :

Les mesures des courants à long terme sont très peu nombreuses le long du littoral français. Par contre de nombreux modèles ont permis de mettre en évidence ces courants à l'échelle régionale. A l'échelle locale (zone de qq km), certaines parties du littoral ont été étudiées mais pas la totalité.

Profondeur moyenne

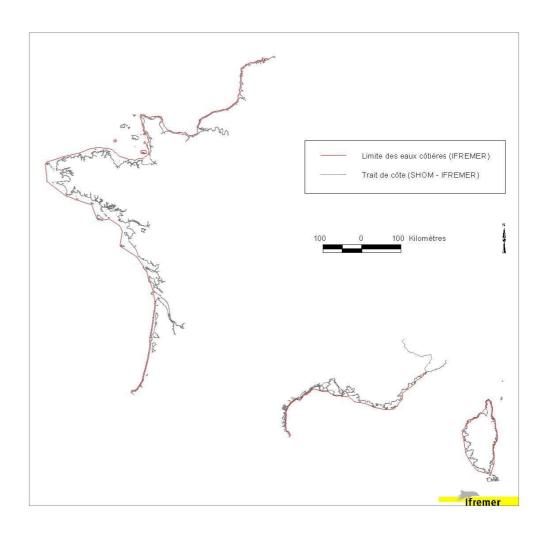
Définition du paramètre :

C'est la moyenne des profondeurs entre le trait de côte et la limite externe du zonage.

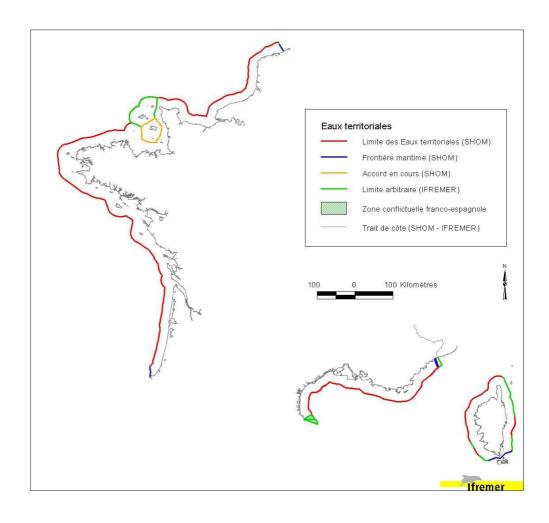
Interprétation du point de vue de l'hydrodynamisme : et comme paramètre discriminant :

La profondeur agit de multiples manières sur l'hydrodynamique. Le mélange, les courants et la propagation de la houle varient fortement mais de manière complexe et équivoque en fonction de la profondeur. Du point de vue de la biologie, ce paramètre est un facteur essentiel car il caractérise en grande partie la quantité de lumière reçue par le fond. Une évaluation plus précise de la quantité de lumière reçue par le fond nécessiterait de prendre en compte une information sur la turbidité des eaux. Dans cette première approche, cette démarche n'est pas envisagée.

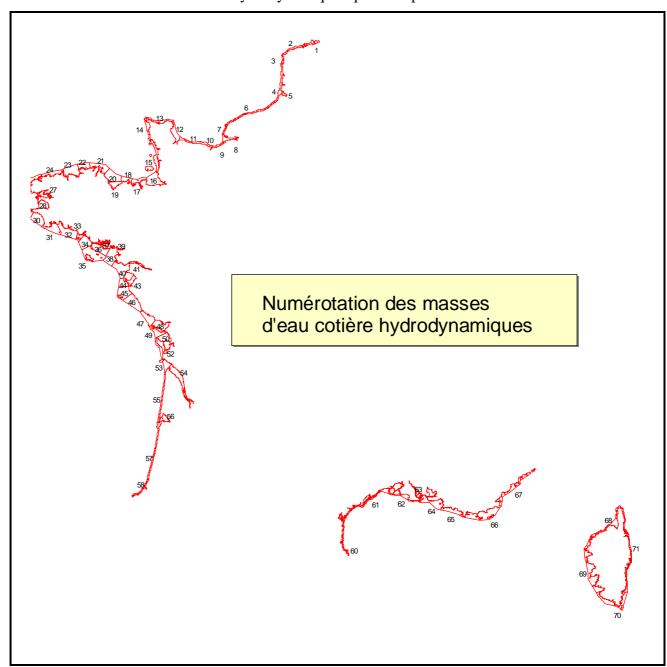
Disponibilité, accessibilité de la donnée :


Aux échelles considérées dans cette étude, on peut considérer que les informations sur la bathymétrie sont suffisantes pour évaluer une profondeur moyenne.

Annexe 2 : Cartes des limites administratives


Ligne de base de la France métropolitaine

Limite des Eaux côtières de la France métropolitaine



Eaux territoriales et limites substitutives de la France métropolitaine

Annexe 3 : Répartition des surfaces de masses d'eau naturelles par masses d'eau naturelles hydrodynamiques et par type.

Les tableaux 1 à 3 comportent une numérotation des masses d'eau naturelle hydrodynamiques qui est explicitée dans la carte ci-dessous.

Tableau 1: Surface des masses d'eau naturelles côtière par type et par masses d'eau naturelles hydrodynamiques **dans le cas de 5 classes morphosédimentaires**. Pour les intitulés de types, voir § 6.3.

Numéro zone hydro	Type de masse d'eau	Surface (m²)
1	23211	9 171 177
	23212	112 835 931
Somme 1		122 007 108
2	23211	910 002
	23212	78 221 415
	23214	5 853 627
Somme 2		84 985 044
3	33211	5 051 690
	33212	23 362 031
	33214	32 914 583
	33215	18 752 973
Somme 3		80 081 277
4	33211	24 818 483
	33212	214 017 169
	33214	5 246 176
	33215	3 825 697
Somme 4		247 907 525
5	1	21 907 406
	2	18 598 262
Somme 5		40 505 668
6	23212	42 983 833
	23214	125 402 811
	23215	55 882 298
Somme 6		224 268 942
7	22221	5 790 758
	22222	45 434 981
	22225	5 402 876
Somme 7		56 628 615
8	1	116 244 226
	2	16 521 204
	4	1 134 317
	5	1 783 650
Somme 8		135 683 396
9	22211	23 483 344
	22212	42 172 987
	22215	444 352
Somme 9	ı	66 100 683
10	1	4 631 110

Somme 10			4 631 110
	11	22212	49 696 881
		22214	41 746 011
		22215	107 085 053
Somme 11	l		198 527 945
	12	32111	35 940 799
		32112	158 901 065
		32114	10 310 967
		32115	84 999 549
Somme 12			290 152 380
	13	33211	24 184 291
		33214	52 708 203
		33215	100 467 218
Somme 13			177 359 713
	14	23312	42 919 072
		23314	56 659 228
		23315	71 251 709
Somme 14			170 830 009
	15	23211	33 626 332
		23212	80 071 181
		23214	204 887 497
		23215	133 278 179
Somme 15			451 863 188
	16	23111	173 230 379
		23113	330 590 178
		23115	25 311 269
Somme 16			529 131 825
	17	12211	24 388 523
		12212	2 041 795
		12213	85 827 398
		12214	42 223 803
		12215	69 323 652
Somme 17			223 805 171
	18	22211	1 387 527
		22212	10 895 313
		22214	79 113 940
		22215	54 381 855
Somme 18			145 778 635
	19	11111	10 182 442
		11112	41 236 705
		11114	82 295 190
		11115	59 083 942
Somme 19			192 798 279

	20	22211	21 187 947
		22213	226 317 898
		22214	153 235 324
		22215	104 692 820
Somme 20	<u>.</u>		505 433 989
	21	23211	9 560 638
		23213	62 697 879
		23214	34 816 571
		23215	285 278 411
Somme 21	<u>.</u>		392 353 499
	22	33214	105 927 564
		33215	126 248 430
Somme 22	•		232 175 994
	23	11211	14 404 333
		11212	51 774 130
		11213	119 924 004
		11214	154 594 566
		11215	170 464 549
Somme 23	I		511 161 583
	24	22212	14 369 986
		22214	40 973 780
		22215	195 051 794
Somme 24	,		250 395 560
	25	33311	1 378 000
		33312	11 537 146
		33313	209 528 294
		33315	617 212 226
Somme 25	•		839 655 666
	26	22311	61 400 027
		22312	22 331 170
		22313	8 847 365
		22314	334 274 353
		22315	692 548 931
Somme 26	•		1 119 401 845
	27	12111	119 804 936
		12114	53 313 031
Somme 27	·		173 117 967
	28	11212	48 944 284
		11213	41 639 081
		11214	112 367 703
		11215	41 149 800
Somme 28	I		244 100 868
			110 824 846

_	<u></u>		
		33315	175 657 517
Somme 29	<u> </u>		286 482 363
	30	11311	90 428 748
		11312	59 425 470
		11314	125 333 658
		11315	152 731 629
32Somme 32			427 919 506
	31	22211	8 064 310
		22214	104 127 648
		22215	250 029 565
Somme 31	<u>.</u>		362 221 523
	32	11311	200 744 304
		11312	1 529 129
		11314	97 367 816
		11315	292 170 728
Somme 32	l		591 811 977
	33	22311	36 170 076
		22314	30 073 426
		22315	57 316 151
Somme 33	I		123 559 653
	34	11311	76 272 576
		11313	31 458 136
		11314	80 698 602
		11315	221 703 931
Somme 34			410 133 246
	35	33311	85 143 091
		33314	246 483 909
		33315	353 046 043
Somme 35			684 673 042
	36	11121	249 259 267
		11124	118 357 162
		11125	43 874 429
Somme 36			411 490 858
	37	13111	117 025 879
Somme 37		13111	117 025 879
	38	12221	400 524 644
	30	12222	3 112 680
		12224	74 240 335
		12225	85 802 806
Somme 38		12223	563 680 466
Somme 30	39	1	14 913 301
Somme 39	39	1	14 913 301
Somme 39	40	22221	
	40	22321	104 236 543

I	Г	22322	216 813 813
	-	22324	121 375 452
		22325	101 819 599
Somme 40		22323	544 245 407
Somme 40	41	1	69 319 986
	41	<u>1</u> 11	4 338 562
C 41		11	
Somme 41	42	22211	73 658 548
	42	23211	81 145 516
		23212	3 013 105
		23214	73 694 264
~		23215	33 995 081
Somme 42			191 847 966
	43	33111	125 889 731
		33114	15 501 295
		33115	3 267 729
Somme 43			144 658 755
	44	22311	6 421 118
		22312	34 357 612
		22314	36 416 736
		22315	145 092 110
Somme 44			222 287 576
	45	22311	10 200 239
		22312	73 754 951
		22314	154 841 756
		22315	220 749 228
Somme 45	ı		459 546 174
	46	11311	167 445 679
		11312	102 837 676
		11314	109 820 453
		11315	149 994 903
Somme 46	ı		530 098 712
	47	23311	38 903 061
		23312	126 533 217
		23315	176 197 113
Somme 47			341 633 391
	48	13211	300 231 599
	· `	13212	26 399 781
	F	13214	38 335 807
	-	13215	20 279 227
Somme 48		13213	385 246 415
DOMINIC TO	49	23321	88 378 690
	47	23324	21 944 314
	-	23325	136 764 233
		23323	130 /04 233

Somme 49			247 087 237
	50	23221	233 942 589
		23224	20 821 295
		23225	22 068 238
Somme 50			276 832 122
	51	33121	195 583 434
		33122	6 727 586
Somme 51			202 311 021
	52	11322	126 940 142
		11325	55 430 624
Somme 52			182 370 766
	53	32322	158 999 557
		32325	44 296 688
Somme 53			203 296 245
	54	1	415 886 131
		2	78 531 710
Somme 54	L		494 417 841
	55	11312	200 965 672
		11315	3 843 903
Somme 55	I		204 809 575
	56	23111	147 659 675
		23112	43 876 871
		23114	21 590 340
Somme 56			213 126 886
20111110	57	21311	8 759 555
		21312	229 214 485
Somme 57		21012	237 974 040
Somme 57	59	21312	23 040 125
		21314	4 467 010
		21315	39 796 318
Somme 59		21313	67 303 452
Bollinie 37	60	21211	15 000 084
	00	21213	7 956 822
Somme 60		21213	22 956 906
Somme oo	61	1	71 904 727
	01	2	154 001 732
		3	8 072 438
		4	461 836
		21111	109 173 902
		21111	210 514 691
Somme 61		21112	554 129 325
POHIME 01	62	21122	
Samma 62	62	21122	190 728 477
Somme 62			190 728 477

	63	1	22 756 668
Somme 63	I		22 756 668
	64	21221	486 924 581
		21222	41 071 253
		21224	125 901 050
Somme 64	<u>'</u>		653 896 884
	65	21211	97 994 373
		21212	146 131 004
		21214	53 661 399
Somme 65			297 786 776
	66	21211	373 942 281
		21212	260 356 050
		21213	9 985 814
		21214	308 096 058
Somme 66			952 380 203
	67	1	17 681 560
		4	1 341 072
		31211	230 168 116
		31212	29 555 939
		31213	2 369 010
		31214	63 496 494
		31215	855 962
Somme 67			345 468 154
	68	1311	46 283 577
		1312	6 131 011
		1314	284 495 203
Somme 68			336 909 791
	69	1311	355 284 159
		1312	22 173 947
		1314	568 776 234
Somme 69			946 234 340
	70	1311	42 357 556
		1312	87 180 395
		1313	224 512 155
		1314	131 420 009
Somme 70			485 470 115
	71	1111	56 931 031
		1112	144 677 119
		1114	186 442 246
Somme 71			388 050 396
Total			22 124 275 462

 $\textbf{Tableau 2}: Surface \ des \ masses \ d'eau \ naturelles \ côtière \ par \ type \ et \ par \ masses$ d'eau naturelles hydrodynamiques dans le cas de 4 classes morphosédimentaires. Pour les intitulés de types, voir § 6.3.

Numéro zone hydro	Type de masse d'eau	Surface (m ²)
	23211	9 171 177
	23212	112 835 931
Somme 1		122 007 108
2	2 23211	910 002
	23212	78 221 415
	23213	5 853 627
Somme 2		84 985 044
	33211	5 051 690
	33212	23 362 031
	33213	32 914 583
	33214	18 752 973
Somme 3		80 081 277
4	33211	24 818 483
	33212	214 017 169
	33213	5 246 176
	33214	3 825 697
Somme 4		247 907 525
4	5 1	21 907 406
	2	18 598 262
Somme 5		40 505 668
(5 23212	42 983 833
	23213	125 402 811
	23214	55 882 298
Somme 6		224 268 942
Ţ.	7 22221	5 790 758
	22222	45 434 981
	22224	5 402 876
Somme 7		56 628 615
{	3	116 244 226
	2	16 521 204
	3	1 134 317
	4	1 783 650
Somme 8	•	135 683 396
Ç	22211	23 483 344
	22212	42 172 987
	22214	444 352
Somme 9	ı	66 100 683

	10	1	4 631 110
Somme 10	I		4 631 110
	11	22212	49 696 881
		22213	41 746 011
		22214	107 085 053
Somme 11			198 527 945
	12	32111	35 940 799
		32112	158 901 065
		32113	10 310 967
		32114	84 999 549
Somme 12			290 152 380
	13	33211	24 184 291
		33213	52 708 203
		33214	100 467 218
Somme 13			177 359 713
	14	23312	42 919 072
		23313	56 659 228
		23314	71 251 709
Somme 14			170 830 009
	15	23211	33 626 332
		23212	80 071 181
		23213	204 887 497
		23214	133 278 179
Somme 15			451 863 188
	16	23111	173 230 379
		23112	330 590 178
		23114	25 311 269
Somme 16			529 131 825
	17	12211	24 388 523
		12212	87 869 193
		12213	42 223 803
		12214	69 323 652
Somme 17			223 805 171
	18	22211	1 387 527
		22212	10 895 313
		22213	79 113 940
		22214	54 381 855
Somme 18			145 778 635
	19	11111	10 182 442
		11112	41 236 705
		11113	82 295 190
		11114	59 083 942
Somme 19			192 798 279

	20	22211	21 187 947
		22212	
		22212	226 317 898
		22213	153 235 324
		22214	104 692 820
Somme 20	l .		505 433 989
	21	23211	9 560 638
		23212	62 697 879
		23213	34 816 571
		23214	285 278 411
Somme 21			392 353 499
	22	33213	105 927 564
		33214	126 248 430
Somme 22	l .		232 175 994
	23	11211	14 404 333
		11212	171 698 134
		11213	154 594 566
		11214	170 464 549
Somme 23	I		511 161 583
	24	22212	14 369 986
		22213	40 973 780
		22214	195 051 794
Somme 24	<u>'</u>		250 395 560
	25	33311	1 378 000
		33312	221 065 439
		33314	617 212 226
Somme 25	<u>'</u>		839 655 666
	26	22311	61 400 027
		22312	31 178 535
		22313	334 274 353
		22314	692 548 931
Somme 26			1 119 401 845
	27	12111	119 804 936
		12113	53 313 031
Somme 27	ı		173 117 967
	28	11212	90 583 365
		11213	112 367 703
		11214	41 149 800
Somme 28	1		244 100 868
	29	33313	110 824 846
		33314	175 657 517
Somme 29	1		286 482 363
	30	11311	90 428 748
		11312	59 425 470

11313 11314 22211 22213 22214 11311 11312 11313 11314 22311 22313 22314 11311 11312	125 333 658 152 731 629 427 919 506 8 064 310 104 127 648 250 029 565 362 221 523 200 744 304 1 529 129 97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
22211 22213 22214 11311 11312 11313 11314 22311 22313 22314	427 919 506 8 064 310 104 127 648 250 029 565 362 221 523 200 744 304 1 529 129 97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
22213 22214 11311 11312 11313 11314 22311 22313 22314	8 064 310 104 127 648 250 029 565 362 221 523 200 744 304 1 529 129 97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
22213 22214 11311 11312 11313 11314 22311 22313 22314	104 127 648 250 029 565 362 221 523 200 744 304 1 529 129 97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
22214 11311 11312 11313 11314 22311 22313 22314 11311	250 029 565 362 221 523 200 744 304 1 529 129 97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
11311 11312 11313 11314 22311 22313 22314	362 221 523 200 744 304 1 529 129 97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
11312 11313 11314 22311 22313 22314	200 744 304 1 529 129 97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
11312 11313 11314 22311 22313 22314	1 529 129 97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
11313 11314 22311 22313 22314 11311	97 367 816 292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
22311 22313 22314 11311	292 170 728 591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
22311 22313 22314 11311	591 811 977 36 170 076 30 073 426 57 316 151 123 559 653
22313 22314 11311	36 170 076 30 073 426 57 316 151 123 559 653
22313 22314 11311	30 073 426 57 316 151 123 559 653
22314 11311	57 316 151 123 559 653
11311	123 559 653
	76 272 576
11312	76 272 576
	31 458 136
11313	80 698 602
11314	221 703 931
	410 133 246
33311	85 143 091
33313	246 483 909
33314	353 046 043
	684 673 042
11121	249 259 267
11123	118 350 446
11124	43 874 429
	411 484 141
13111	117 025 879
	117 025 879
12221	400 524 644
12222	3 112 680
12223	74 240 335
12224	85 802 806
	563 680 466
1	14 913 301
	14 913 301
22321	104 236 543
	216 813 813
22323	121 375 452
22324	101 819 599
	544 245 407
	11313 11314 33311 33313 33314 11121 11123 11124 13111 12221 12222 12223 12223 12224 1 22321 22322 22322 22323

	41	1	69 319 986
		11	4 338 562
Somme 41	·		73 658 548
	42	23211	81 145 516
		23212	3 013 105
		23213	73 694 264
		23214	33 995 081
Somme 42			191 847 966
	43	33111	125 889 731
		33113	15 501 295
		33114	3 267 729
Somme 43			144 658 755
	44	22311	6 421 118
		22312	34 357 612
		22313	36 416 736
		22314	145 092 110
Somme 44	•		222 287 576
	45	22311	10 200 239
		22312	73 754 951
		22313	154 841 756
		22314	220 749 228
Somme 45	•		459 546 174
	46	11311	167 445 679
		11312	102 837 676
		11313	109 820 453
		11314	149 994 903
Somme 46	•		530 098 712
	47	23311	38 903 061
		23312	126 533 217
		23314	176 197 113
Somme 47			341 633 391
	48	13211	300 231 599
		13212	26 399 781
		13213	38 335 807
		13214	20 279 227
Somme 48	•		385 246 415
	49	23321	88 378 690
		23323	21 944 314
		23324	136 764 233
Somme 49	•		247 087 237
	= 0	22221	233 942 589
	50	23221	233 772 307
	50	23223	20 821 295

Somme 50			276 832 122
	51	33121	195 583 434
		33122	6 727 586
Somme 51	•		202 311 021
	52	11322	126 940 142
		11324	55 430 624
Somme 52	•		182 370 766
	53	32322	158 999 557
		32324	44 296 688
Somme 53			203 296 245
	54	1	415 886 131
		2	78 531 710
Somme 54			494 417 841
	55	11312	200 965 672
		11314	3 843 903
Somme 55			204 809 575
	56	23111	147 659 675
		23112	43 876 871
		23113	21 590 340
Somme 56			213 126 886
	57	21311	8 759 555
		21312	229 214 485
Somme 57			237 974 040
	59	21312	23 040 125
		21313	4 467 010
		21314	39 796 318
Somme 59			67 303 452
	60	21211	15 000 084
		21212	7 956 822
Somme 60			22 956 906
	61	1	71 904 727
		2	162 059 877
		3	461 836
		21111	109 173 902
		21112	210 497 565
Somme 61			554 097 907
	62	21122	190 728 477
Somme 62			190 728 477
	63	1	22 756 668
Somme 63			22 756 668
	64	21221	486 924 581
		21222	41 071 253
	l l		

Somme 64			653 896 884
	65	21211	97 994 373
		21212	146 131 004
		21213	53 661 399
Somme 65			297 786 776
	66	21211	373 942 281
		21212	270 341 865
		21213	308 096 058
Somme 66	•		952 380 203
	67	1	17 681 560
		3	1 341 072
		31211	230 158 982
		31212	31 924 950
		31213	63 468 874
		31214	855 962
Somme 67			345 431 399
	68	1311	46 283 577
		1312	6 131 011
		1313	284 495 203
Somme 68			336 909 791
	69	1311	355 284 159
		1312	22 173 947
		1313	568 776 234
Somme 69	T		946 234 340
	70	1311	42 357 556
		1312	311 692 550
		1313	131 420 009
Somme 70			485 470 115
	71	1111	56 931 031
		1112	144 677 119
		1113	186 442 246
Somme 71			388 050 396
Total			22 124 200 573

Tableau 3 : Surface des masses d'eau naturelles côtière par type et par masses d'eau naturelles hydrodynamiques dans le cas de 3 classes morphosédimentaires. Pour les intitulés de types, voir § 6.3.

Numéro zone hydro	Type de masse d'eau	Surface (m²)
1	23211	9 171 177
	23212	112 835 931
Somme 1		122 007 108
2	23211	910 002
	23212	84 075 042
Somme 2		84 985 044
3	33211	5 051 690
	33212	56 276 614
	33213	18 752 973
Somme 3		80 081 277
4	33211	24 818 483
	33212	219 263 345
	33213	3 825 697
Somme 4		247 907 525
5	1	21 907 406
	2	18 598 262
Somme 5		40 505 668
6	23212	168 386 644
	23213	55 882 298
Somme 6		224 268 942
7	22221	5 790 758
	22222	45 434 981
	22223	5 402 876
Somme 7		56 628 615
8	1	116 244 226
	2	17 655 093
	3	1 783 650
Somme 8		135 682 969
9	22211	23 483 344
	22212	42 172 987
	22213	444 352
Somme 9		66 100 683
10	1	4 631 110
Somme 10		4 631 110
11	22212	91 442 892
	22213	107 085 053
Somme 11	'	198 527 945
12	32111	35 940 799

		32112	169 212 032
		32113	84 999 549
Somme 12			290 152 380
	13	33211	24 184 291
		33212	52 708 203
		33213	100 467 218
Somme 13			177 359 713
	14	23312	99 578 300
		23313	71 251 709
Somme 14	·		170 830 009
	15	23211	33 626 332
		23212	284 958 677
		23213	133 278 179
Somme 15			451 863 188
	16	23111	173 230 379
		23112	330 590 178
		23113	25 311 269
Somme 16	<u> </u>		529 131 825
	17	12211	24 388 523
		12212	130 092 996
		12213	69 323 652
Somme 17	, 		223 805 171
	18	22211	1 387 527
		22212	90 009 253
		22213	54 381 855
Somme 18			145 778 635
	19	11111	10 182 442
		11112	123 531 895
		11113	59 083 942
Somme 19			192 798 279
	20	22211	21 187 947
		22212	379 553 222
		22213	104 692 820
Somme 20	I		505 433 989
	21	23211	9 560 638
		23212	97 514 449
		23213	285 278 411
Somme 21	<u> </u>		392 353 499
	22	33212	105 927 564
		33213	126 248 430
Somme 22			232 175 994
· -	23	11211	14 404 333
	-5	11212	326 292 700
		11212	320 272 700

İ		11213	170 464 549
Somme 23		11213	511 161 583
Somme 25	24	22212	
	24	22212	55 343 765
G 24		22213	195 051 794
Somme 24			250 395 560
	25	33311	1 378 000
		33312	221 065 439
		33313	617 212 226
Somme 25			839 655 666
	26	22311	61 400 027
		22312	365 452 888
		22313	692 548 931
Somme 26			1 119 401 845
	27	12111	119 804 936
		12112	53 313 031
Somme 27	<u>'</u>		173 117 967
	28	11212	202 951 068
		11213	41 149 800
Somme 28	I		244 100 868
	29	33312	110 824 846
		33313	175 657 517
Somme 29			286 482 363
	30	11311	90 428 748
		11312	184 759 128
		11313	152 731 629
Somme 30			427 919 506
	31	22211	8 064 310
		22212	104 127 648
		22213	250 029 565
Somme 31			362 221 523
	32	11311	200 744 304
	32	11312	98 896 946
		11313	292 170 728
Somme 32		11313	591 811 977
Somme 32	33	22311	36 170 076
	33	22312	30 073 426
		22312	57 316 151
Somme 33		22313	123 559 653
Bolline 33	34	11311	76 272 576
	J+	11311	112 156 739
		11312	221 703 931
Somme 34		11313	
Somme 34	25	22211	410 133 246
	35	33311	85 143 091

		33312	246 483 909
		33313	353 046 043
Somme 35			684 673 042
	36	11121	249 259 267
		11122	118 350 446
		11123	43 874 429
Somme 36		-	411 484 141
	37	13111	117 025 879
Somme 37		10111	117 025 879
<u> </u>	38	12221	400 524 644
	30	12222	77 353 016
		12223	85 802 806
Somme 38		12223	563 680 466
Somme 36	39	1	14 913 301
Somme 39	33	1	14 913 301
SOUTHING 39	40	22221	104 236 543
	40	22321	
		22322	338 189 265
G 40		22323	101 819 599
Somme 40	44	1	544 245 407
	41	1	69 319 986
		11	4 338 562
Somme 41	1		73 658 548
	42	23211	81 145 516
		23212	76 707 369
		23213	33 995 081
Somme 42			191 847 966
	43	33111	125 889 731
		33112	15 501 295
		33113	3 267 729
Somme 43			144 658 755
	44	22311	6 421 118
		22312	70 774 348
		22313	145 092 110
Somme 44			222 287 576
	45	22311	10 200 239
		22312	228 596 707
		22313	220 749 228
Somme 45			459 546 174
	46	11311	167 445 679
		11312	212 658 130
		11313	149 994 903
Somme 46	U		520 000 712
		l	530 098 712

		23312	126 533 217
		23313	176 197 113
Somme 47			341 633 391
	48	13211	300 231 599
		13212	64 735 588
		13213	20 279 227
Somme 48	1		385 246 415
	49	23321	88 378 690
		23322	21 944 314
		23323	136 764 233
Somme 49	l .		247 087 237
	50	23221	233 942 589
		23222	20 821 295
		23223	22 068 238
Somme 50	<u> </u>		276 832 122
	51	33121	195 583 434
		33122	6 727 586
Somme 51			202 311 021
	52	11322	126 940 142
	32	11323	55 430 624
Somme 52		11323	182 370 766
Somme 32	53	32322	158 999 557
	33	32323	44 296 688
Somme 53		32323	203 296 245
Bonnie 33	54	1	415 886 131
	34	2	78 531 710
Somme 54		2	494 417 841
Somme 34	55	11312	200 965 672
	33	11313	3 843 903
Somme 55		11313	204 809 575
Somme 33	56	23111	147 659 675
	30	23111	65 467 211
Somme 56		23112	
Somme 30	57	21211	213 126 886
	37	21311	8 759 555 229 214 485
C		21312	
Somme 57	50	21212	237 974 040
	59	21312	27 507 134
g		21313	39 796 318
Somme 59	60	21211	67 303 452
	60	21211	15 000 084
~		21212	7 956 822
Somme 60			22 956 906
	61	1	71 904 727

		2	162 536 006
		21111	109 173 902
		21112	210 514 691
Somme 61			554 129 325
	62	21122	190 728 477
Somme 62	-		190 728 477
	63	1	22 756 668
Somme 63			22 756 668
	64	21221	486 924 581
		21222	166 972 303
Somme 64			653 896 884
	65	21211	97 994 373
		21212	199 792 403
Somme 65			297 786 776
	66	21211	373 942 281
		21212	578 437 922
Somme 66	1		952 380 203
	67	1	17 681 560
		2	1 341 072
		31211	230 168 116
		31212	95 421 443
		31213	855 962
Somme 67	·		345 468 154
	68	1311	46 283 577
		1312	288 648 837
Somme 68			334 932 414
	69	1311	355 284 159
		1312	590 950 181
Somme 69			946 234 340
	70	1311	42 357 556
		1312	443 112 559
Somme 70			485 470 115
	71	1111	56 931 031
		1112	331 119 365
Somme 71			388 050 396
Total			22 122 290 941